Lecture 7

More on

Laplace Transform
(Lathi 4.3 - 4.4)

Peter Cheung
Department of Electrical \& Electronic Engineering
Imperial College London
URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals
E-mail: p.cheung@imperial.ac.uk

PYKC 8-Feb-11	E2.5 Signals \& Linear Systems	Lecture 7 Slide 1

Example

- Find the initial and final values of $\mathrm{y}(\mathrm{t})$ if $\mathrm{Y}(\mathrm{s})$ is given by:

$$
Y(s)=\frac{10(2 s+3)}{s\left(s^{2}+2 s+5\right)}
$$

$$
\begin{aligned}
& \text { initial value: } y(0+)=\lim _{s \rightarrow \infty} s Y(s) \\
& =\lim _{s \rightarrow \infty} \frac{10(2 s+3)}{\left(s^{2}+2 s+5\right)}=0 \\
& \text { final value: } \quad \begin{aligned}
y(\infty) & =\lim _{s \rightarrow 0} s Y(s) \\
& =\lim _{s \rightarrow 0} \frac{10(2 s+3)}{\left(s^{2}+2 s+5\right)}=6
\end{aligned}
\end{aligned}
$$

Initial \& Final Value Theorems

- How to find the initial and final values of a function $x(t)$ if we know its Laplace Transform $X(s) ?\left(\mathrm{t} \rightarrow \mathrm{O}^{+}\right.$, and $\left.\mathrm{t} \rightarrow \infty\right)$

```
Initial Value Theorem
\mp@subsup{\operatorname{lim}}{t->0}{}x(t)=x(\mp@subsup{0}{}{+})=\mp@subsup{\operatorname{lim}}{s->\infty}{}sX(s)
Conditions:
Laplace transforms of \(x(t)\) and \(\mathrm{dx} / \mathrm{dt}\) exist
\[
\lim _{t \rightarrow 0} x(t)=x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s)
\]
\(\mathrm{X}(\mathrm{s})\) numerator power ( M ) is less than denominator power ( \(N\) ), i.e. \(M<N\).
```

Final Value Theorem

$$
\lim _{t \rightarrow \infty} x(t)=x(\infty)=\lim _{s \rightarrow 0} s X(s)
$$

- Conditions:
- Laplace transforms of $x(t)$ and $d x / d t$ exist.
- $s X(s)$ poles are all on the Left Plane or origin.

PYKC 8-Feb-11	E2.5 Signals \& Linear Systems	Lecture 7 Slide 2

Laplace Transform for Solving Differential Equations

- Remember the time-differentiation property of Laplace Transform

$$
\frac{d^{k} y}{d t^{k}} \Leftrightarrow s^{k} Y(s)
$$

- Exploit this to solve differential equation as algebraic equations:

Example (1)

Example (2)

Time Domain	Laplace (Frequency) Domain
$\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y(t)=\frac{d x}{d t}+x(t)$	$\begin{aligned} {\left[s^{2} Y(s)-2 s-1\right]+5[s Y(s)} & -2]+6 Y(s) \\ & =\frac{s}{s+4}+\frac{1}{s+4} \end{aligned}$
	$\left(s^{2}+5 s+6\right) Y(s)-(2 s+11)=\frac{s+1}{s+4}$
	$\left(s^{2}+5 s+6\right) Y(s)=\frac{2 s^{2}+20 s+45}{s+4}$
	$Y(s)=\frac{2 s^{2}+20 s+45}{(s+2)(s+3)(s+4)}$
$y(t)=\left(\frac{13}{2} e^{-2 t}-3 e^{-3 t}-\frac{3}{2} e^{-4 t}\right) u(t)$	$Y(s)=\frac{13 / 2}{s+2}-\frac{3}{s+3}-\frac{3 / 2}{s+4} \quad \mathrm{L4.3} \mathrm{p} 371$
PYKC 8-Feb-11 E2.	als \& Linear Systems Lecture 7 Slide 6

Laplace Tranform and Transfer Function

- Let's express input $\mathrm{x}(\mathrm{t})$ as a linear combination of exponentials $e^{s t}$:

$$
x(t)=\sum_{i=1}^{K} X\left(s_{i}\right) e^{s_{i} t}
$$

- $\mathrm{H}(\mathrm{s})$ can be regarded as the system's response to each of the exponential components, in such a way that the output $\mathrm{y}(\mathrm{t})$ is:

$$
y(t)=\sum_{i=1}^{K} X\left(s_{i}\right) H\left(s_{i}\right) e^{s_{i} t}
$$

- Therefore, we get $\quad Y(s)=H(s) X(s)$

$X(s) \longmapsto \quad \begin{gathered}\text { Transfer Function } \\ \mathrm{H}(\mathrm{s})\end{gathered} \longrightarrow Y(s)=H(s) X(s)$

Transfer Function Examples

Initial conditions in systems (1)

Initial conditions in systems (2)

- Similarly, consider an inductor L with an initial current $i(0)$:
- Consider a capacitor C with an initial voltage $\mathrm{v}\left(0^{-}\right): \quad v(t)=L \frac{d i}{d t}$
- Now take Laplace transform on both sides:
- Rearrange this to give:

- In circuits, initial conditions may not be zero. For example, capacitors may be charged; inductors may have an initial current.
- How should these be represented in the Laplace (frequency) domain?
- Consider a capacitor C with an initial voltage $\mathrm{v}\left(0^{-}\right): \quad i(t)=C \frac{d v}{d t}$
- Now take Laplace transform on both sides:
- Rearrange this to give:

$$
I(s)=C\left[s V(s)-v\left(0^{-}\right)\right]
$$

- The switch in the circuit here is in closed position for a long time before $t=0$, when it is opened instantaneously. Find the current $\mathrm{y} 1(\mathrm{t})$ and $\mathrm{y} 2(\mathrm{t})$ for $\mathrm{t}>0$.

- From this we can rewrite as in matrix form
- We need to solve for $Y_{1}(s)$ and $Y_{2}(s)$. $\left[\begin{array}{cc}\frac{1}{s}+\frac{1}{5} & -\frac{1}{5} \\ -\frac{1}{5} & \frac{6}{5}+\frac{s}{2}\end{array}\right]\left[\begin{array}{l}Y_{1}(s) \\ Y_{2}(s)\end{array}\right]=\left[\begin{array}{l}\frac{4}{s} \\ 2\end{array}\right]$
- We do this by applying Cramer's rule, which is:
- Given $\boldsymbol{A} z=c$, where \boldsymbol{A} is a square matrix, z and c are column vectors, the vector z can be solve by:

$$
z_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}
$$

where A_{i} is the matrix A with its $\mathrm{i}^{\text {th }}$ column replaced by column vector c.

$a x+b y$	$=e$
$c x+d y$	$=f$
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$	$=\left[\begin{array}{l}e \\ f\end{array}\right] \quad x=\frac{\left\|\begin{array}{ll}e & b \\ f & d\end{array}\right\|}{\left\|\begin{array}{ll}a & b \\ c & d\end{array}\right\|}=\frac{e d-b f}{a d-b c} \quad y=\frac{\left\|\begin{array}{ll}a & e \\ c & f\end{array}\right\|}{\left\|\begin{array}{ll}a & b \\ c & d\end{array}\right\|}=\frac{a f-e c}{a d-b c}$

Solving Transient Behaviour in circuits - Example 2(1)

- Find the transfer function $H(s)$ relating the output $v_{o}(t)$ to the input voltage $v_{i}(t)$ for the Sallen and Key filter shown below. Assume that initial condition is zero.

> Step 1: Form equivalent circuit Step 2: Pick "variables" - nodal voltages at a and b

- We readily obtain:
and therefore:
tain:

$$
Y_{1}(s)=\frac{\operatorname{det}\left[\begin{array}{cc}
\frac{4}{s} & -\frac{1}{5} \\
2 & \frac{6}{5}+\frac{s}{2}
\end{array}\right]}{\operatorname{det}(A)}=\frac{24(s+2)}{s^{2}+7 s+12}=\frac{-24}{s+3}+\frac{48}{s+4}
$$

- Inverse Laplace gives us: $\quad y_{1}(t)=\left(-24 e^{-3 t}+48 e^{-4 t}\right) u(t)$
- Similarly we obtain: $\quad Y_{2}(s)=\frac{4(s+7)}{s^{2}+7 s+12}=\frac{16}{s+3}-\frac{12}{s+4}$
- Therefore: $\quad y_{2}(t)=\left(16 e^{-3 t}-12 e^{-4 t}\right) u(t)$
PYKC 8-Feb-11 E2.5 Signals \& Linear Systems

Solving Transient Behaviour in circuits - Example 2(2)

Step 3: Sum current at node a	$\frac{V_{a}(s)-V_{i}(s)}{R_{1}}+\frac{V_{a}(s)-V_{b}(s)}{R_{2}}+\left[V_{a}(s)-K V_{b}(s)\right] C_{1} s=0$
	$\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+C_{1} s\right) V_{a}(s)-\left(\frac{1}{R_{2}}+K C_{1} s\right) V_{b}(s)=\frac{1}{R_{1}} V_{i}(s)$
Step 4: Sum current at node b	$\frac{V_{b}(s)-V_{a}(s)}{R_{2}}+C_{2} s V_{b}(s)=0$
	$-\frac{1}{R_{2}} V_{a}(s)+\left(\frac{1}{R_{2}}+C_{2} s\right) V_{b}(s)=0$
Step 5: Put in matrix form	$\left[\begin{array}{cc}G_{1}+G_{2}+C_{1} s & -\left(G_{2}+K C_{1} s\right) \\ -G_{2} & \left(G_{2}+C_{2} s\right)\end{array}\right]\left[\begin{array}{l}V_{a}(s) \\ V_{b}(s)\end{array}\right]=\left[\begin{array}{c}G_{1} V_{i}(s) \\ 0\end{array}\right]$
$G_{1}=\frac{1}{R_{1}}$	$G_{2}=\frac{1}{R_{2}} \quad K=1+\frac{R_{b}}{R_{a}}$

Solving Transient Behaviour in circuits - Example 2(3)

Step 6: Apply Cramer's rule

$$
\begin{gathered}
K=1+\frac{R_{b}}{R_{a}} \quad \text { and } \quad \omega_{0}^{2}=\frac{G_{1} G_{2}}{C_{1} C_{2}}=\frac{1}{R_{1} R_{2} C_{1} C_{2}} \\
2 \alpha=\frac{G_{1} C_{2}+G_{2} C_{2}+G_{2} C_{1}(1-K)}{C_{1} C_{2}}=\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}}(1-K)
\end{gathered}
$$

Step 7: Derive H(s)

$$
V_{o}(s)=K V_{b}(s)
$$

$$
H(s)=\frac{V_{o}(s)}{V_{i}(s)}=K \frac{V_{b}(s)}{V_{i}(s)}=\frac{K \omega_{0}^{2}}{s^{2}+2 \alpha s+\omega_{0}^{2}}
$$

- You have done much of the circuit analysis in your first year, but Laplace transform provides much more elegant method in find solutions to BOTH transient and steady state condition of circuits.
- You have done Sallen-and-Key filter in your $2^{\text {nd }}$ year analogue circuits course. Here we derive the transfer function from first principle, using only tools you know about.
- The treatment provided in this lecture also enhances what you have been learning in your $2^{\text {nd }}$ year control course.

